International Journal of Theoretical Physics, Vol. 43, No. 2, February 2602(04)

Correlation and Information in Quantum Channels

Masashi Bar+23

Quantum and classical correlations in quantum channels are investigated by means
of an entangled pure state and a separable state which is closest to an entangled
pure state. The coherent information and the separable information are used to es-
timate how much correlation is transmitted through a quantum channel. As the ex-
amples, the linear dissipative channel of qubits and the quantum erasure channel are
considered.
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1. INTRODUCTION

In quantum information processing (Nielsen and Chuang, 2000), change of
quantum states is described by a trace-preserving completely positive map which
is called a quantum channel or a quantum operation. Hence it is important to inves-
tigate how much quantum and classical correlation in quantum states change under
the influence of quantum channels. For a general quantum state, it is very difficult
to separate between quantum correlation and classical correlation (Henderson and
Vedral, 2001). Hence a pure entangled st@t€?) is used for investigating quan-
tum correlation and a separable staf€ ¢losest to a pure entangled stade'®)
is considered to investigate classical correlation. In this paper, using information-
theoretical quantitites, we investigate how much correlation in quantum states
|WAB) and gL8 changes under the influence of quantum channels. In Section 2,
we briefly summarize a quantum channel, an entangled pure state and a separable
state closest to an entangled pure state. In Sections 3 and 4, the basic properties of
the coherent information and the separable information are reviewed. In Section
5, the classical correspondence of the coherent information and the separable in-
formation is given. In Section 6, the degradation of correlations cased by quantum
channel is investigated. In Section 7, we consider correlations between an input
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and output systems of a quantum channel. In Sections 8 and 9, we investigate
the linear dissipative channel of qubits and the quantum erasure channels and we
calculate the coherent information and the separable information. In Section 10,
we give the concluding remarks.

2. ENTANGLED STATE AND SEPARABLE STATE

We consider a quantum state described by a density operateine support
space of which is assumed to beMrdimensional Hilbert spac#”. Introducing
an auxiliary Hilbert spacét®, we can extend a quantum staté to a quantum
statep™® defined on a Hilbert spack” @ %5, the partial trace of which yields
the original quantum state; that is, Tg 5" = pA. Of course, such an extension
is not unlquely determined. We denote the spectral decomposmon of the quantum
statep asp” Zk 1kk|1//k (¥ (k> 0 for all k), where( 1/;1 [¥2) = 8 and
Zk LU Wl = 1A with 1A being an identity operator defined on the Hilbert
spacei”. One of the extended quantum staté8i8 a purification of the quantum
statep™ (Schumacher, 1996), which is given by

"AB |‘I’AB> <\IJAB| (1)
with the entangled statg”8),
N
A8 =3 Vawd) @ [wd), @
k=1

where{|y2)|k = 1, 2,..., N} is an orthonormal system of the Hilbert spack.
It is obvious that Tg|WAB) (W48 = 54 is satisfied.

When a distance between two quantum statemndg, is measured by means
of the quantum relative entropy (Ohya and Petz, 1993),

S(p1lp2) = Tr[pa(log o1 — log p2)], ®3)

the separable quantum statf® Ttlosest to the entangled pure staf® = |WAB)
(WAB| is given by

P8 = Zwk Nl ® [v)wg, (4)

which satisfies the equalit$(s55|p48) = miNn; AB. S(p4B|61B) (Vedral and
Plenio, 1988), wheré& a5 is the set of all separable quantum states defined on
the Hilbert spacéit” @ #°. Since the quantum stae® satisfies the relation
TrgpAB = pA, the separable staj€® is also the extension of the quantum state
p~. The system# andB in the quantum state® are entangled, i.e., quantum me-
chanically correlated while they are classically correlated in the quantunp$tate ~
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A quantum channel (or a quantum operation) that transforms a quantum
state into another is mathematically represented by a trace-preserving completely
positive mapiif When the system is transmitted through a quantum charﬁﬂé‘l
and the systenB remains unchanged, the extended quantum stéfearid 528
becomes

PP = (A ® §B)|wAB) (W), (5)
paB = Zxksff“wk Jwic| @ [we)widl, Q)

where $B is an identity map for operators of the syst@nlt is an important
task is quantum information processing to estimate how much entanglement and
classical correlation between the systefnandB are preserved (or degraded) in
the transmission through a quantum charifél

Atrace-preserving completely positive m%ﬁ is frequently expressed in the
two different but equivalent forms (Kraus, 1983; Schumacher, 1996). One is called
the Kraus representation (or the operator-sum representation) which is given by

PR = T AR, ™)

for an arbitrary operato)(A where the operato&,t in the representation satisfies
the relatlonz AT A = 1A. The other is called the unitary representation, which
is given by

gAXA — TrE[O AE()'\(A ® |0E> <0E|)0 AET], (8)

where|0F) is a quantum state of an environmental system @A is a unitary
operator defined on the Hilbert spaié' ® %F with % being the Hilbert space

of the environment. Using the unitary representation, we can express the quantum
statep’8,as

Peow= Tre|Wou (Wour |, (9)
with
[WhE) = (UAF @ 1%)| W), (10)
and
(WA%) = [W*) ® |0F). (11)
The change of the quantum state caused by the quantum channel is evaluated by
Fe(p™, &%) = (WA¥I[(Z4 © 9°)|WA®) (W] | w*®), (12)

F(o", 2% = Zw (A &) [w ). (13)
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The former is called the entanglement fidelity and the latter is called the
average fidelity (Schumacher, 1996). The entanglement f|deI|ty is no greater than
the average fidelity, namely, the inequalfy(s*, £*) < F(p* §BA) holds. For
the entangled pure statd®= |WAB) (WAB|, the quantum information-theoretical
properties of the transformationt® — (¥2 @ $7)528 have been investigated
(Schumacher and Nielsen, 1996). The reversibility of such a state transformation
is closely related to the quantum error correction (Knill and Laflamme, 1997).

3. COHERENT INFORMATION AND QUANTUM ENTANGLEMENT

We consider the case that the systémin the entangled pure quantum
state oz = [WAB)(WAB| is sent through noisy quantum channel described by a
trace- preservmg completely positive mﬁ?ﬁ The properties of the transmitted
statepiB = ($” ® $8)je have been investigated in detail (Schumacher, 1996;
Schumacher and Nielsen, 1996). Hence we briefly summarized the results in this
section. The von Neumann entropies of the input and output states of the system
Aare

(3" = ~Tr{p"log 5", (14)
S(ﬁgut) = [pout |OQ loout] (15)

wherep?), = Trgps8 . Sincepi® is a pure state and the systeBnremains un-
changed, we obtain the relation,

S(5") = S(5%) = S(pew)» (16)

wherep® = Traps® and 68, = TrapA8,. The entropy exchange of the quantum
channel®? is given by

S(p", FP) = —Tr[phB log 528, A7)

which is independent of the syste Indeed, using the Kraus representation of
the quantum channé&?, we obtain the expression,

S(p", 2*) = —SpiW log W], (18)
where' is a matrix whose element is given by
W, = Tr[ApAAT] (19)

Here we have used the symbol ‘Sp’ for a trace operation of matrices to distingusih
it from a trace operation of operators.

Considering the unitary representation of the quantum channel and the Araki—
Lieb inequality for von Neumann entropies, we find that the entropy exchange is
equal to the von Neumann entropy of the environmental system at the output side
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of the quantum channét?,
S, %) = S(ps) = —Tre[Aoulod Agul, (20)
with
Pout = Tras|Woit Yot |- (21)

where| W EE) is given by Eq. (10). The entropy exchange plays a similar role to
the conditional entropy in the classical information theory. The entropy exchange
S(pA, §BA) satisfies the quantum Fano inequality (Schumacher, 1996),

S(PA P < HIF(p™, M) +[1 — Fe(p?, $YI0g(N? - 1),  (22)

whereFe(p4, £4) is the entanglement fidelity of the quantum charifi] which
is given by Eq. (12), andi (x) is the binary entropic function defined Iby/(x) =
—xlogx — (1 — x)log(1 — x).

The coherent information (Schumacher and Nielsen, 1996) of the quantum
channel?”, which is denoted ake(p?, £7), is given by the difference between
the von Neumann entropy of the output state of the systeand the entropy
exchange of the quantum channel,

Ic(p”, %) = S(phou) — S(P™, 27). (23)

The coherent informatiomc(,@A, S@A) can take negative values and satisfies the
inequality —S(p?) < Ic(p?, £A) < S(p”). Furthermore, the quantum data pro-
cessing inequality is derived for the coherent information,

Ic(p?, KAER) < 1c(p™, M), (24)

where A and KA are any trace-preserving completely positive maps. The loss
entropyLc(p%, %A and the noise entropic(5?, £4) of the quantum channel
FA are defined by

Le(p™, 28 = S(%) — Ic(p™, 21, (25)
Ne(p?, £%) = S(pou) — 1c(p™, 24). (26)

It has been shown (Schumacher and Nielsen, 1996) that the quantum channel
FAis completely reversible and the quantum error correction is possible if and
onlyif Lc(p2, &EA) = 0. In other words, there is some quantum opera#idrsuch
thatFe(p”, RALA) = Lifand only ifLc(p”, ) = 0. The coherent information
is considered the quantum information or the quantum entanglement transmitted
through a noisy quantum channel.
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4. SEPARABLE INFORMATION AND CLASSICAL CORRELATION

In this section, we consider the case that the system A in the separable state
p&® closest to the entangled pure stale™®) is sent through a noisy quantum
channel¥A. The von Neumann entropies of the input and output states of the
systemA are given by Eqgs. (14) and (15). In this case, the separable entropy
S(p™, £7) (Ban, 2003) is introduced by

S 27 = = DM (@A) ) log (2wl )], @7)

which satisfies the quantum Fano inequality,
S 24 = HIF(PA 2N +[1 - F(3* M]log(N - 1), (28)

whereF (54, E@A) is the average fidelity of the quantum chanifelvhich is given

by Eqg. (13). Note that lody — 1) appears on the right-hand side of Eq. (28) while
log(N? — 1) does in Eq. (22) since the correlation between the systearsd B

in the separable stat€® is due to theN diagonal elements while the correlation
in the entangled stajet® is caused by thél? diagonal and off-diagonal elements.
The entropy exchang®&(s”, £4) and the separable entrofy(p*, $*) satisfies
the inequality,

SN M) < SN, PN < S(BP) + SR, PP, (29)

_ The separable informatioky(5”, i%A) (Ban, 2003) of the quantum channel
$Ais defined by the difference between the von Neumann entropy of the output
state of the system and the separable entropy of the quantum channel,

Is(3%, £%) = S(pan) — S(B", 27). (30)

Unlike the coherent information, the separable informatigp”, @A) is nonneg-
ative and satisfies the inequality

0 < 15(p*, ) < min[S(5*), S(pa)]- (31)

Furthermore, the quantum date processing inequality holds for the separable in-
formation,

Is(3%, KAZA) < 1s(5™, &M, (32)

where$? andKA are any trace-preserving completely positive maps. It is found
from Eq. (29) thatthe separable informatigo*, £*) is notless than the coherent
informationlc(p”, £4),

lc(p, 2M) < Is(p?, 2P). (33)
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The loss entropy.s(p”, $2) and the noise entropis(5?, £A) in this case are
given by

Ls(p*, 2*) = S(p™) — Is(p*, %), (34)
Ns(p”, 1) = S(Pou) — Is(p*, £4). (35)
It is shown (Ban, 2003) that the quantum chanfé! is partially reversible
with respect to the orthonormal systeiy2), [¥2), ..., v} if and only if

Ls(,o SL’A) 0. In other words, there is a quantum operatift such that

F(pA QRA§£A) =1 if and only if Lg(3”, £*) = 0. It is obvious from Eq. (33)

that if the quantum channel is completely reversible, it is partially reversible. The
separable information may be considered the measure of the transmitted classical
correlation.

5. CLASSICAL CORRESPONDENCE

To obtain the classical correspondence of the entropy exchange, the coherent
information, the separable entropy and the separable information, we consider a
classical-like quantum, channel. A classical communication channelis completely
determined by conditional probability (channel matrix) (Cover and Thomas, 1991)
P(j Ik) that the output symbdl of the classical channel is obtained when the input
symbol isk. Then a classical-like quantum channel is described by a completely
positive map2 which corresponds to the conditional probabilRyj |K). In the
Kraus representation, the trace-preserving completely positivéffidggiven by

~ M M ~ A
Feph =) Axd"Al, (36)

=1 k=1

with
Ay = VPR 6B wd], 37)

where{|yM|j =1,2,..., N} and{|¢jB)|k =1,2,..., M} are complete ortho-
normal systems of the input and output Hilbert spaces of the classical-like quan-
tum channel. The input system which generates the symlvath probability
Pa(K) is in the quantum state”"= Zk 1 PA(k)|1pk 1//k [, and the output sys-
tem of the quantum channel is describeddfy= ZJ 1 PB(])|¢J qu |, where
Pe(j) = Zk 1 P( |k) Pa(k). Then the input—output relation of the quantum chan-
nel is given byp® = $A5A.

It is found for the cIaSS|caI like quantum channel that the entropy exchange
S(p*, FA) is the joint entropyH (A, B) and the separable entroy(p*, $4) is
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the conditional entropyd (B|A), that is,

M N

H(A, B) = — > > " P(jIk)Pa(k) log[P(jIK)Pa(k)], (38)
j=1 k=1
M N

H(BIA) = —) > P(jlk)Pa(K) log P(j k). (39)

=1

=
Il

1

Then the coherent informatiol(5* ££A) and the separable informatidg(p*,
$A) becomes-H(A|B) andH(A : B),

M N .
H(AE) == Y3 PIPa@log| OO | o)
=1 k=1 Ps(j)
INUNE P(i K
H(A: B) = ZZP(nk)PA(k)Iog[ 7], (41)
1 k=1 Pa(j)

whereH (A : B) is the Shannon mutual information. Summarizing the result, we
obtain the relations for the classical-like quantum channel,

S(p" £%) = H(A, B), (42)
S(p", 2% = H(B|A), 43)
S(p? #%) = —H(AB), (44)
Ss(p”, FA) = H(A: B). (45)

6. DEGRADATION OF CORRELATIONS

The quantum statp4® is the separable state closest to the entangled pure
statepe When the distance between the quantum states is measured by the quantum
relative entropy. The distand®(5”, $#) between the separable sta® and the
entangled statg4® is given by

E(p*, 9% = S(pa®I2°) = S(5%), (46)
which is equal to the entropy of entanglement (Benredtgl, 1996) of the pure
entangled statgl”B). Thus the distanc&(p”, $4) is the entanglement measure
of the quantum state4®. When the systena in the quantum state4® or p48 is
transmitted through the quantum chanf#é, the correlation between the system
Aand the systerB is inevitably degraded under the influence of the environmental
system. The distance between the transmitted quantum states becomes

E(5", ) = S(p45,1555,)
= S(3™) + 1c(p, FA) — 1s(p*, F). (47)
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Then the decrease of the distance caused by the quantum clfza‘i*l'rsegiven by
the difference between the separable information and the coherent information or
the difference between the separable entropy and the entropy exchange,

AE(M, &P = E(p*, 97 — E(B™, 2P
= Is(p™, &M — 1c(p”, $7)
= SN, PN — SN ). (48)

Since the quantum relative entrofj:|p,) satisfies the inequality for any trace-
preserving completely positive méafy

S(p1lp2) = SEp11%52), (49)

the quantityA E(p”, fle) is nonnegative. This result means that the inequalities
Is(p?, L) = 1c(p”, £7) andS(67, £7) < S(p%, £*) hold.

_We now consider simple quantum channels. A unitary channel is given by
FAXA = UAXAJAT whereUA is a unitary operator. In this case, we obtain

le(ph, &P = 1s(p™, FM) = S(p%), (50)
Le(ph, 2P = Ls(p™, % =0 (51)
Ne(p?, $4) = Ns(p?, %) = 0. (52)

Thus the unitary channel is lossless and noiseless and thus it does not decrease
the distance between the quantum sta¥sahd 48, namely,AE(p”, $4) =0
Next we consider a completely randomizing channel defined?ByA = &4,
whereé&” is some quantum state such&s= (1/N)1A. The output state of the
completely randomizing channel is independent of the input state. Then we obtain

lc(p™, £4) = —S(pM), (53)
Le(p™, ) = 25(5M), (54)
Ne(p?, £4) = 2S(E%), (55)
and
1s(p%, &*) =0, (56)
Ls(p?, &%) = S(5*), (57)
Ns(p*, £4) = SE*). (58)

where S(€*) is the von Neumann entropy of the quantum stgteln this case,
the decrease of the distance between the quantum giitends2° is given by
AE(pA, £8) = S(p").
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7. VON NEUMANN MUTUAL INFORMATION
OF QUANTUM CHANNEL

Firstwe briefly review the Shannon mutualinformation for a classical channel.
An input system of a classical channel is described by a stochastic vaAable
which takes a valua € 2 5 with probability Pa(a). An output system is described
by another stochastic variabE which takes a valud € Qg with probability
Pg(b). The classical channel creates some classical correlation between the input
and output systems. Then the compound system which consists of the input and
output system is described by the stochastic variaBlend B with the joint
probability Pag(a, b) which must satisfyPg(b) = > ..o, Pas(a, b) andPa(a) =
> beas Pas(@ b). The degree of the correlation between the input and output
system depends on how much information is transmitted from the input system to
the output system by the classical channel. If there is no information transmission,
there is no correlation and thus the equakig(a, b) = Pa(a) Ps(b) holds. Hence
the Shannon mutual informatidg(A : B) between the input and output systems
may be measured by means of the classical relative entropy of the two probabilities
Pag(a, b) and Pa(a) Pg(b), that is,

) Pag(a, b) ]
: = ,b)1 — 7
oA B = 3 3 Pulab og[PA(a)PB(b)
— H(A)+ H(B) — H(A, B), (59)

whereH (A), H(B), andH (A, B) are the Shannon entropies®{(a), Pg(b), and
Pas(a, b), for example H(A) = > .., Pa(a)log Pa(a).

For a quantum channel, we suppose that an input system of the quantum
channel is described by a quantum stafeahd an output system is described
by another quantum stape®.”A quantum channel which can transmit quantum
and classical information from the input system from the output system makes
some correlation between them. Then the compound system consisting of the in-
put and output systems is described by a quantum gtftevhich satisfies the
relationsp™ = Trgp*Bandg® = Trap”B. If there is no information transmission,
it is obvious that the equality"® = 62 ® 5® holds. Thus the von Neumann mu-
tual informationl (A : B) between the input and output systems is given by the
quantum relative entropy of the quantum staié%and " ® B, that is,

lo(A: B) = Trag(p*"[log 5"* — log (5" ® 5°)))
= S(p") + S(p®) — S(5"). (60)

It is important to note that the compound quantum spdfecannot be determined
uniquely. It may depend on what we consider as information transmitted through
the quantum channel.
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We first consider the case that the compound state is given by
ﬁ@gut_ (gA ® 98)|qJAB \.IJAB|

= ZZMSBAI% el ® v P)wel, (61)

j=1 k=1

wherey” = 3, Al (¥ is the spectral decomposition. In this case, the von
Naumann mutual informatiohy (A : B) between the input and output systems is
given by the coherent information of the quantum channel and the von Neumann
entropy of the input system, that is,

lo(A: B) = S(3*) + Ic(p", 7). (62)

On the other hand, if the classical correlation is considered the information trans-
mitted through the quantum chanrigl, the compound state is given by the
separable state,

laé\c?ut—z)‘kigl-\‘l/fk WA\ (63)

which is equivalent to that introduced in (Ahlswede, arabér, 2001; Ohya and
Petz, 1993). Then, the von Neumann mutual informatigfA : B) becomes the
separable information,

Ig(A: B) = Is(p", 4. (64)
When we transmit classical information by sending the quantum jstete
(2| with probability A through the quantum chann#h, the classical capacity

of a quantum channel (Holevo, 1998; Schumacher and Westmore-land, 1997) (the
Holevo capacityCy is given by

o= S| o nA W | - Lo

= Is(p", %), (65)

which is optimized as Mg Is(p” @A) On the other hand, the entanglement-
assisted classical capacity of a quantum channel is given bybxflsépA) +
Ic(p”, SBA)] (Bennettet al,, 2002). Both of the coherent information and the sep-
arable information are related to the classical capacity of a quantum channel.

8. LINEAR DISSIPATIVE CHANNEL OF QUBITS

In this section, we calculate the coherent information and separable informa-
tion of the linear dissipative channel of qubits. When we denoteadsne during
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which a qubit is transmitted through the quantum channel, the linear dissipative
channel (Gardiner, 1991) of qubits is given by

FX = exptA]X, (66)
with
AX = %Alo([&)?, 6.1 +[6-, X64]) + %Am([c‘uf(, 61464, X6-]), (67)

whereo’y = (6% £i6y)/2and ¢, 6y, 6;) are the Pauli matrices, and the parameter
Yik is the damping constant of the quantum channel. For the sake of simplicity,
we assume thatip = yo1 = y. In the Kraus representation, the linear dissipative
channel is expressed as

4
EX =" AXAl, (68)
n=1
with
R 1 g
Ar=S(1+e7)1, (69)
L1
A, = 5\/1 — e 15, (70)
1
As = E‘/l — e 215, (71)
~ 1 s
As=5(1+e7)5z (72)

For the eigenstatd8) and|1) of the Pauli matrixo; with 6,|0) = |0) andoz|1) =
—|1), the linear dissipative chann#lyields the relations,

$10)(0] = %(1 +e720)(0] + %(1 — e Y1)(1], (73)
P = %(1 — e 21|0)(0] + %(1 + e 1)1, (74)
F10)(1] = e710)(1, (75)
F11)(0] = e712)(0). (76)

We assume that the input systekof the quantum channel takes an orthogonal
quantum statéyo) or |y1) with equal probabilites, where

[¥o) = cosh|0) + € sind|1), (77)
lY1) = —sind|0) + €% cosh|1). (78)
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Then the quantum state of the input systars completely random,

-3 = =1 79
—§|1/f0)(1/f0|+§|101>(1/f1|—§ . (79)

Sincep?, = %5 = p*, the von Neumann entropies of the input and output states
are equal and given by

S(pow) = S(p*) =log 2 (80)

The entangled stat@”®) and the separable stat€®closest tg w®) are

|WAB) = f(wfo ) ® |o) + 1¥1) ® 1), (81)

pa8 = —|1/fo)(1/fo| ® |¢o) (ol + —|w1><w1| ® |p1) (¢l (82)

where|¢o) and|¢,) are orthonormal states of the syst@&n

To obtain the coherent informatidig (52, §£A) we need the quantum state
phB = (™ ® $B)|WAB)(WAB|, In the matrix notation with the badg) ® |¢x)
(j, k=0, 1), the quantum stai&® ,is given by

A, B. D, C,
1B A Cc. D_

Poout= > : 83
peout 2 Dj, Ci A, B+ ( )
C: D* By Ay
with
1 —2yt
AL = E(l:l:e Yt cos D), (84)
1 5.
B. = iée Ytsin 2, (85)
1 n i$
Ci= :tée ""(1+ cosD)e?, (86)
1 it
D, = iée e ’'sind. (87)

The eigenvalues of the matrix (83) afél — e=2"), (1 — e "), 2(1 4+ e71)?,
and(1 — e "")2. Hence the coherent mformauda(pA FA) of the linear dissi-
pat|ve channel of qubits becomes

Ic(p™, ) = —log 2+ (1 + e " log(l+ e 7t + (1 — e ") log(1— e ).
(88)
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Next we obtain the separable informatikyts *, SABA) of the linear dissipative
channel. We find from Egs. (73)—(78) that

P1vo) (Yol = AL[0)(0] + A_|1)(1] + By (e ?0)(1| + €]1)(0]),  (89)
PIv) (Y1l = A_[0)(0] + AL |1)(1] 4+ B_(e7?|0)(1| + €¢]1)(0)).  (90)

The operatorQWo) (Yol and§%|w1)(1/f1| have the same eigenvalues,

L= %[1 + e f(cos 20)], (91)
with
f(X)=v1—(1—-e2)x. (92)

Therefore the separable informatibs(s?, £*) is given by

1s(p”, $A) = %[1 + e f(cog 20)]log[1 + e " f (cog 26)]

+ %[1 —e "' f(cog 20)]log[l — e " f(cog 20)].  (93)

Note that the coherent informatidga(p*, @A) is independent of the parameters
0 and¢ while the separable informatiory(p*, §£A) depends on the parameter
9 In the case of the quantum depolarizing charidl = A XA with

= VT=PL Ay = /P/36, Ag = +/P/33y, and Ay = ﬁ/%az(o <p=1),
the separable informatohy(p4, EBA) becomes independent of the parameter
because of the symmetric property of the quantum depolarizing channel.

It is easy to see that the maximum value of the separable information with
respect to the parameterare

ngaX([)A, @A) = meaX|s(,5A, i%A)

1 1
= E(l +e " log(l+e ") + 5(1 —e ™) log(l—e ), (94)
which is attained when the input system takes the quantum states
0) + €7]1) 0) — €7]1)

N V1) = 7

On the other hand, when the input system takes the quantum |fedesl|1), the
minimum value of of the separable information is given by

ngaX(laA’ @A) = m@axls(,ﬁA, :@A)

[¥o) = (95)

= %(1 +e " log(l+e ) + %(1 —e"log(l—e™), (96)
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This result means that when the input system takes the superposition state, the
classical correlation between the input and output system becomes stronger for
the linear dissipative channel of qubits.

9. QUANTUM ERASURE CHANNEL

The quantum erasure channel transform a input quantum state into another
guantum state with probabilitp which is defined on an orthogonal subspace of
the support space of the input quantum state and makes the input state unchanged
with probability 1— p. When the orthogonal subspace is an one-dimensional space
spanned byg), the completely positive map which describes the quantum erasure
channel is given by

PR = (1— p)p™ + plo) (sl (97)

Where 0< p < 1andp™|¢)(¢| = |¢)(¢]|p” = 0. Then the von Neumann entropy
of the output quantum state becomes

S(paw) = H(P) + (1 — p)S(pM), (98)

with H(p) = —(1 — p) log(1— p) — plog p. Furthermore, the entropy exchange
S(pA, £A) and the separable entrofy(5”, $£4) are calculated to be

S(PA, Y = H(p) + pSpM), (99)
SR, 2 = H(p). (100)

Hence the coherent informatiotc(p”, QA) and the separable information
Is(p”, £A) of the quantum erasure channel become

lc(p”, %) = (1 - 2p)S(5™M), (101)
Is(”, $4) = (1 — p)S(BY). (102)

If the erasure probability is larger than 1/2, the coherent information takes a
negative value. When the Hilbert space of the system is-dimensional space,
we obtain

(1 2p)logn <o§ p=< %)

1 )
= 1
o (iev=y)

maxls(p®, £*) = (1 — p)logn. (104)
pA

maxlc(p?, £*) = (103)
pA
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In this case, the decrease of the distands(p*, QA) given by Eq. (48) becomes

. plogn (0<p=<3)
AE(pA, 21 = : (105)

IA
IA

=

(1-plogn (3 <p=<1)

which takes the maximum value pt= 1/2.
Next we consider the phase-erasure quantum channel of qubits that is de-
scribed by a completely positive map,

PR = (1= p)pt + Sp(p" + 625767), (106)

with 0 < p < 1. An arbitrary quantum stage” of the input system is expressed as

5 (107)

.a_ 1(14rcos re'¢ sing
re"sind 1—rcosd |’

where 0<r <1,0<6 < m and 0< ¢ < 27. Then, after some calculation, we
obtain the coherent information and the separable information,

7 1
A= AP (%) ! (108)
1s(p", M) = 1c(p*, 2% + p [H (meg) - H (H%S{g)] (109)
the maximum values of which are given by
~A DAY _ 1
L. le(@™, £ =1-p, (110)
~A DAY _
O<r<r?%i(9<n IS('O £ ) =1 (111)

The maximum value of the separable information becomes independerityof
setting the orthonormal system such that the off-diagonal elements destroyed by
the quantum channel does not appear.

10. CONCLUDING REMARKS

In this paper, we have considered the quantum and classical correlation in
quantum channels by means of the information-theoretical quantities, the coherent
information and the separable information. The degradation of the correlation
caused by noisy quantum channels has also been studied. As the examples, we
have investigated the linear dissipative channel of qubits and the quantum erasure
channel.



Correlation and Information in Quantum Channels 339

REFERENCES

Ahlswede, R. and aber, P. (2001). Quantum data processiliti=E Transsctions on Information
TheorylT-47, 474-478.

Ban, M. (2003). Partially reversible quantum operations and their information-theoretical properties.
Journal of Physics 86, 6771-6789.

Bennett, C. H., Bernstein, H. J., Popescu, S., and Schumacher, B. (1996). Concentrating partial entan-
glement by local operationPhysical Review A3, 2046—2052.

Bennett, C. H., Shor, P. W., Smolin, J. A., and Thapliyal, A. V. (2002). Entanglement-assisted capacity
of a quantum channel and the reverse Shannon thetfE&ik.transactions on Information Theory
48, 2637-2655.

Cover, T. M. and Thomas, J. A. (199Blements of Information ThearWiley, New York.

Gardiner, C. W. (1991)Quantum NoisgSpringer-Verlag, Berlin.

Henderson, L. and Vedral, V. (2001). Classical, quantum and total correlalmmsal of Physics A
34, 6899-6905.

Holevo, A. (1998). The capacity of the quantum channel with general signal dtsds Transctions
of Information TheroyT-44, 269-274.

Knill, E. and Laflamme, R. (1997). Theory of quantum error-correcting cdelegsical Review A5,
900-911.

Kraus, K. (1983)State, Effects, and OperatiarSpringer-Verlag, Berling.

Nielsen, M. A. and Chuang, I. L. (200@uantum Computation and Quantum InformatiGambridge
University Press, Cambridge, UK.

Ohya, M. and Petz, D. (1993Ruantum Entropy and It's Us&pringer-Verlag, Berlin.

Schumacher, B. (1996). Sending entanglement through noisy quantum chétysisal Review A
54, 2614-2628.

Schumacher, B. and Nielsen, M. A. (1996). Quantum data processing and error corieyisical
Review A4, 2629-2653.

Schumacher, B. and Westmoreland, M. (1997). Sending classical information via noisy quantum chan-
nel. Physical Review A6, 131-138.

Vedral, V. and Plenio, M. B. (1998). Entanglement measures and purification procefbysgal
Review A67, 1619-1633.



